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Employing Three Swarm Intelligent Algorithms for 
Solving Integer Fractional Programming 

Problems  
 

Ibrahim M. Hezam, Osama Abdel Raouf 
   

Abstract---This paper seeks for the integer optimal solution of the Fractional Programming Problem (IFPP) using three different Swarm Intelligence (SI) 
algorithms. The three algorithms are: Particle Swarm Optimization (PSO), Firefly Algorithm (FA), and Cuckoo Search (CS). The proposed approaches 
perform this by embedding the search space truncating the real values to the nearest integers inside feasible region. This method idea based on SI, 
rounds the real solutions after every step and after the final step. SI approach can get near optimal solutions in a reasonable time and effort. SI is an 
effective techniques for non-smooth functions. The numerical result and statistical analysis show that the proposed methods perform significantly better 
than previously used classical methods. A comparative study among the three SI algorithms on the selected benchmark examples was carried out. The 
study revealed an almost similarity in performance with a privilege in computation time and optimization results for cuckoo search. 

Index Terms--Swarm Intelligence, Particle Swarm Optimization, firefly algorithm, cuckoo search, Fractional Programming, Integer Programming. 
--------------- 

1. INTRODUCTION 
nteger fractional programming plays an important part in 
the optimization modeling and real-world applications, 
require the variables to be optimized to be integers, such 

as fixed-charge problems, job-shop scheduling problems, 
including resource allocation, production scheduling, 
marketing, capital budgeting, assignment, transportation,  
and reliability networks. In order to solve this kind of 
problem, optimization techniques developed for real search 
spaces can be applied to integer programming problems 
and determine the optimal solution by rounding of the real 
optimum values to the nearest integers inside feasible 
region. 
There are several studies in recent years used 
nontraditional methods to solve integer programming as: 
Laskari E.C., et al. in [1] (2002) proposed the Particle swarm 
Optimization for integer programming. Kitayama S., and 
Yasuda K., [2] (2006) proposed Particle Swarm 

Optimization for mixed integer programming. The 
proposed method is that discrete variables are treated 
by a penalty function, so that all variables can be 
handled as the continuous ones. And they proposed a 
new method of setting and updating the penalty 
parameter when discrete variables are treated in terms 
of the penalty function. Li Y., et al. in [3] (2007) used 
chaotic ant swarm to solve the problem of integer 
programming by embedding the search space Z into R 
and truncating the real values to the nearest integers. 
They introduced two novel methods based on the 
chaotic ant swarm, rounding the real solutions after 
every step and after the final step.  

 
 
 
 
 
 
 

 
 
Matsui T., et al. in [4] (2008) develop a new particle swarm 

optimization method which was applied to discrete 
optimization problems by incorporating a new 
method for generating initial search points, the 
rounding of values obtained by the move scheme and 
the revision of move methods. Omran M. G. H, et al. 
in [5] (2007) evaluated the performance of two 

versions of the barebones PSO in solving Integer 
Programming problems. Matsui T., et al. in [4] (2008) 

develop a new particle swarm optimization method 
which was applied to discrete optimization problems 
by incorporating a new method for generating initial 
search points, the rounding of values obtained by the 
move scheme and the revision of move methods.  
Chen H., et al. in [6] (2009) developed particle swarm 
optimization based on genetic operators for nonlinear 
integer programming. The integer restriction of 
problems was transformed by coding solutions. 
According to optimal solutions of population and 
individual, the new particle was updated by 
crossover, mutation and selection operators. Wu P., et 
al. [7] (2010) proposed an effective global harmony 
search algorithm for integer programming problems. 
The effective global harmony search algorithm was 
proposed to solve integer programming problems. 
The effective global harmony search algorithm 
designs a novel location updating equation, which 
enables the improvised solution to move to the global 
best solution rapidly in each iteration. Random 
selection with a low probability was carried out for the 
improvised solution after updating location, for it can 
prevent the effect global harmony search algorithm 
from being trapped into the local optimum. Yang H., 
and Zhao S., [8] (2010), presented a novel hybrid 
approach for solving the Container Loading problem 
based on the combination of immune particle swarm 
optimization and Integer linear programming model. 
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Liu Y., and Ma L., [9] (2011) presented Bee Colony 
Foraging Algorithm for Integer Programming, The 
principle of the optimization algorithm was discussed 
and the implementation of the method was presented. 
Pal A., et al.[10] (2011) presented use of a particle 
swarm optimization (PSO) algorithm for solving 
integer and mixed integer optimization problems. 
Datta D., and Figueira J R.,[11] (2011) develop some 
integer coded versions of PSO for dealing with integer 
and discrete variables of a problem. Bacanin, N., et al. 
in [12] (2013) applied firefly algorithm to integer 
programming problems by rounded the parameter 
values to the closest integer after producing new 
solutions. Ibrahim M. H. and Osama A. [13] (2013) 
used particle swarm optimization approach for 
solving complex variable fractional programming 
problems. 

However, all the above researches did not address cuckoo 
search for integer programming generally and did not 
apply it directly to handle the integer fractional 
programming problems.  
The purpose of this research work is to investigate the 
solution the integer fractional programming problem using 
swarm intelligence. Section 2 introduces the formulation of 
the integer fractional programming problems. Particle 
swarm optimization algorithm is reviewed in section 3. 
Section4 review firefly algorithm. Cuckoo search algorithm 
introduced in section 5.   Illustrative examples and 
discussing the results are presented in Section 6. Finally, 
Conclusions are presented in Section7. 

2. INTEGER FRACTIONAL PROGRAMMING 
The paper, consider the general fractional programming 
problem (FPP) as in the following form: 
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where ( ) ( ),i if x g x , are continuous functions, Z is the set 
of integers. S is compact. 
Fractional programming of the form (1) arises in a natural 
way whenever rates such as the ratios (profit/revenue), 
(profit/time), (-waste of raw material/quantity of used raw 
material), are to be maximized often these problems are 
linear or at least concave-convex fractional programming 
[14].  

There are many different direct algorithms to solve the 
fractional programming problem. 
 Classical algorithms contain two stages:   stage 1:   solve 
the FPP via Charnes–Cooper’s transformation, Dinkelbach 
algorithms both types, Isbell Marlow method, Wolf 
parametric approach, Martos’ Algorithm, Cambini–
Martein’s Algorithm, etc. For converting the fractional 
programming problems to non-fractional programming 
problems.  Stage 2: use the branch and bound technique, 
cutting planes, the implicit enumerative method and other 
methods to solve the integer programming problems IPP. 
However, when the dimension of IFPP is small, the classical 
algorithm such as the above methods is able to handle the 
problem and give the required solution. But, in large-scale 
problems, and nonlinear cases, this is not always efficient. It 
will cost much computing convergence time, which cannot 
satisfy the requirement of engineering. 

 3. PARTICLE SWARM OPTIMIZATION (PSO)[15–17] 
Particle swarm optimization is a population based 
stochastic optimization technique developed by Eberhart 
and Kennedy in 1995, inspired by social behavior of bird 
flocking or fish schooling. 
The characteristics of PSO can be represented as follows:   

k
ix The current position of the particle i at iteration k; 
k
iv The current velocity of the particle i at iteration k; 
k
iy  The personal best position of the particle i at iteration 

k; 
k
iy  The neighborhood best position of the particle. 

 
The velocity update step is specified for each dimension j ∈ 
1,…,Nd, hence, vi,j represents the jth element of the velocity 
vector of the ith particle. Thus, the velocity of particle i is 
updated using the following equation: 

( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

1 1

2 2

1k k
i i i i

i i

v t round wv t round c r t y t x t

round c r t y t x t

+ = + −

+ −
                    

(2) 
  where w is weighting function, 1,2c  are weighting 

coefficients, ( ),2ir t  are random numbers between 0 and 1. 
The current position (searching point in the solution space) 
can be modified by the following equation: 

1 1k k k
i i ix x v+ += +                                                                     (3) 

The detailed operation of particle swarm optimization is 
given below: 
Step 1: Initialize parameters and population. 
Step 2: Initialization. Randomly set the position and 
velocity of all particles, within pre-defined ranges. And on 
D dimensions in the feasible space (i.e.it satisfies all the 
constraints) 
Step 3: Velocity Updating. At each iteration, velocities of all 
particles are updated according to equation (2) 
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After updating, k
iv should be checked and maintained 

within a pre-specified range to avoid aggressive random 
walking. 
Step 4: Position Updating. Assuming a unit time interval 
between successive iterations, the positions of all particles 
are updated according to equation (3). 
After updating, k

ix  should be checked and limited within 
the allowed range. 
Step 5: Memory updating. Update k

iy  and  
k
iy  when condition is met. 

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
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y t if f x t f y t
y t

x t if f x t f y t

 + ≥+ = 
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where f(x) is the objective function subject to maximization. 
Step 6: Termination Checking. Repeat Steps 2 to 4 until 
definite termination conditions are met, such as a pre-
defined number of iterations or a failure to make progress 
for a fixed number of iterations. 

4. FIREFLY ALGORITHM (FA) [16], [18–20] 

The Firefly Algorithm was developed by Yang (2008) and it 
was based on the following idealized behavior of the 
flashing characteristics of fireflies: 
• All fireflies are unisex so that one firefly is attracted to 
other fireflies regardless of their sex; 
• Attractiveness is proportional to their brightness, thus for 
any two flashing fireflies, the less bright one will move 
towards the brighter one. The attractiveness is proportional 
to the brightness and they both decrease as their distance 
increases. If no one is brighter than a particular firefly, it 
moves randomly; 
• The brightness or the light intensity of a firefly is affected 
or determined by the landscape of the objective function to 
be optimized. 
The operation of the Firefly Algorithm is as follows: 
Step 1: Define Objective function ( ) ( )1 2, , ,..., df x x x x x=  
and Generate initial population of fireflies placed at 
random positions within the n-dimensional search space, 
xi. Define the light absorption coefficient γ . 
Step 2: Define the Light Intensity of each firefly, Li, as the 
value of the cost function for xi. 
Step 3: For each firefly, xi, the light Intensity, Li, is 
compared for every firefly xj  { }1,2,...,j d∈  
Step 4: If Li  is less than Lj, then move firefly xi towards xj in 
n-dimensions. The value of attractiveness between flies 
varies relatively the distance r between them: 

( )21 ( )ijrt t t t t
i i j i ix round x e x xγβ αe−+ = + − +                         

(4) 
where β is the attractiveness at r=0 the second term is due 
to the attraction, while the third term is randomization with 
the vector of random variables εi being drawn from a 

Gaussian distribution. 0,1α ∈   . The distance between any 

two fireflies i and j at i jx and x  can be regarded as the 

Cartesian distance 
2ij i jr x x= − or the 2l -norm. 

Step 5: Calculate the new values of the cost function for 
each fly, xi, and update the Light Intensity, Li. 
Step 6: Rank the fireflies and determine the current ‘best’. 
Step 7: Repeat Steps 2 to 6 until definite termination 
conditions are met, such as a pre-defined number of 
iterations or a failure to make progress for a fixed number 
of iterations. 
 
 
5. CUCKOO SEARCH ALGORITHM (CS) [21–26] 
The Cuckoo search algorithm is a Meta heuristic search 
algorithm which has been proposed recently by Yang and 
Deb (2009) and it was based on the following idealized 
rules:  
• Each cuckoo lays one egg at a time, and dumps it in a 
randomly chosen nest. 
• The best nests with high quality of eggs (solutions) will 
carry over to the next generations. 
• The number of available host nests is fixed, and a host can 
discover an alien egg with a probability [ ]0,1ap ∈ . In this 
case, the host bird can either throw the egg away or 
abandon the nest so as to build a completely new nest in a 
new location. 
Cuckoo search algorithm  
Begin 

Objective function ( ) ( )1 2, , ,..., ;T
df x x x x x=  

 Initial a population of n host nests ( )1,2,...,ix i d=  
while (t < MaxGeneration) or (stop criterion); 
    Get a cuckoo (say i) randomly 
                and generate a new solution by Lévy flights; 
           Evaluate its quality/fitness; F Ri 
     Choose a nest among n (say j ) randomly;  
if (F RiR > FRjR), 
        Replace j by the new solution; 
end 
 Abandon a fraction (Pa) of worse nests 
       [and build new ones at new locations via Lévy  flights]; 
   Keep the best solutions (or nests with quality solutions); 
  Rank the solutions and find the current best; 
 end while 
 Post process results and visualization; 
End 
 

when generating new solutions ( )1ix t +  for the ith 
cuckoo, the following Lévy flight is performed 
( ) ( ) ( )1 vyt t
i ix round x Leα λ+  = + ⊕ 

 
                                    (5) 

where 0α > is the step size, which should be related to the 
scale of the problem of interest. The product ⊕ means 
entry-wise multiplications [26]. In this research work, we 
consider a Lévy flight in which the step-lengths are 
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distributed according to the following probability 
distribution 

vy ,1 3Le u t λ λ−= < ≤  
which has an infinite variance. Here the consecutive 
jumps/steps of a cuckoo essentially form a random walk 
process which obeys a power-law step length distribution 
with a heavy tail. 
 
For integer programming, the SI can be used by embedding 
the search space Z into R and truncating the real values to 
the nearest integers after every step. 
The only difference between a real-coded PSO, FA, and CS 
and an integer coded is the data-type after evolution 
according to (2), (3), (4), and (5) respectively.  

 
 
6. ILLUSTRATIVE EXAMPLES WITH DISCUSSION  

Five examples were collected from literature to 
demonstrate the efficiency and robustness of the proposed 
algorithms in solving fractional programming problems. 
The numerical results which are compared among the 
present algorithms are illustrated in Table 1. The algorithms 
have been implemented by MATLAB R2011. Where the 
functions are as the following: 
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The figures (1-5.a,b) shows the graphical representation of 
the solution space of the objective function, side by side, 
with a 2d plot comparing PSO, FA and CS with respect to 
Computational time. The value of the decision variables 
obtained were almost identical for the three different SI 
algorithms. However a slight improvement in the objective 
function and its decision variables values can be noticed in 
CS solution results. Then CS have the advantage of 
reaching a better objective function value as well as the fast 
convergence. 
 

Table (1): Comparison results of the PSO, FA and CS. 
Fun. 

/ Tec. 

N
um

. o
f 

Ite
ra

tio
n 

 PSO FA CS 
Optimal value  Time (Sec.) Optimal value  Time (Sec.) Optimal value  Time (Sec.) 

 

1f  

10 
15 
20 
25 
30 

(-6,5)   z=-0.8365 
(-66,5)  z=-0.8365 
(4,7)    z=-0.8358 
(0,-11)  z=- 0.8215 
(-1,3)    z=-0.8355 

18.00 
26.82 
35.37 
44.01 
52.55 

(-2,-50) z=-0.596 
(-66,32) z=-0.3745 
(0,-66) z=-0.6436 
(0,-8) z=-0.50467 
(-3,-18) z=-.5117 

0.081 
0.164 
0.177 
0.231 
0.265 

(-3,-100) z=-0.70691 
(-1,-52)  z=-0.5873 
(-4,-100) z=-0.6821 
(4,-100) z=-0.69531 
(3,-100) z=-0.7094 

0.024 
0.035 
0.043 
0.044 
0.065 

 

2f  

10 
15 
20 
25 
30 

(82,64) z=0.50035 
(-84,42) z=0.50052 
(-29,86) z=0.5006 
(-87,-58) z= 0.5003 
(22,96) z=0.50043 

13.721 
19.632 
26.657 
33.486 
40.007 

(-100,-46) z=0.50035 
(-89,72) z=0.500247 
(-100,-7) z=0.50039 
(-98,91) z=0.50016 
(-87,98) z=0.50014 

0.0944 
0.142 
0.196 
0.244 
0.266 

(94,100) z=0.50011 
(-95,-100) z=0.50013 
(100,98) z=0.50010 
(-98,100) z=0.50011 
(-98,100) z=0.50011 

0.0312 
0.0337 
0.0399 
0.0518 
0.0669 

3f  

10 
15 
20 
25 
30 

(2,0) z=0.5454 
(2,0) z=0.5454 
(2,0) z=0.5454 
(2,0) z=0.5454 
(1,0) z=0.5454 

0.753 
1.433 
1.463 
1.737 
2.323 

(2,0) z=0.5454 
(2,0) z=0.5454 
(2,0) z=0.5454 
(1,0) z=0.5454 
(3,0) z=0.5454 

0.0734 
0.1074 
0.1321 
0.1752 
0.2322 

(2,0) z=0.5454 
(3,0) z=0.5454 
(3,0) z=0.5454 
(1,0) z=0.5454 
(3,0) z=0.5454 

0.0275 
0.0308 
0.0387 
0.0531 
0.0566 

4f  

10 
15 
20 
25 
30 

(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 

1.0775 
1.5725 
2.2214 
2.5044 
3.3674 

(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 

0.07951 
0.11831 
0.15030 
0.20335 
0.22500 

(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 
(0,0) z=-0.1 

0.04279 
0.04904 
0.05308 
0.06190 
0.08736 

5f  

10 
15 
20 
25 
30 

(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 

0.7349 
1.0383 
1.4458 
1.7264 
1.9723 

(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 

0.07689 
0.13825 
0.21487 
0.21881 
0.24019 

(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 
(4,0) z=0.31136586 

0.02968 
0.03175 
0.06566 
0.06974 
0.08310 

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    195 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

 
  

 

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    196 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

 
 

                                                
                                           (a)                                                                                                                   (b) 

Fig.1. (a) Objective function f1 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.  
 
 

                                 
                                         (a)                                                                                                           (b)                    

Fig.2. (a) Objective function f2 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.  
 
 

                                         
                                   (a)                                                                                                                  (b) 

Fig.3. (a) Objective function f3 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.  
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                                      (a)                                                                                                          (b) 

Fig.4. (a) Objective function f4 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.  

                           
                                       (a)                                                                                                    (b) 

Fig.5. (a) Objective function f5 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS. 
 

Fig. 1-2, (b). Evidently shows that CS and FA algorithms are 
quite better than the PSO in the terms of computational 
time for reaching optimum or near optimum optimization. 
PSO computation time reached a value of 40-50 second to 
obtain optimality while FA and CS algorithms took less 
than a second to reach the same optimal goal. This could be 
indicated to the multi-packs in the functions 1 2,f f  only.  
While in simple function such as 3f , 4f  and 5f   shown in 
figures (3, 4, 5-b) respectively, CS algorithm is still in 
advance with less dominance. Then comes the FA 
algorithm, while PSO algorithm comes last in terms of 
computation time.  
Overall the three algorithms reached almost exactly the 
same objective function and decision variables value in all 
the simple functions   3f , 4f  and 5f   

7. CONCLUSIONS 
The current research work managed to solve integer 
fractional programming problem (IFPP) using three 
different swarm intelligence (SI) algorithms. The numerical 
result and statistical analysis indicated that the proposed 
methods perform significantly better than the previously 
used the classical methods. The three used algorithms 
named particle swarm optimization (PSO), firefly algorithm 
(FA), and cuckoo search (CS) were tested on benchmark 
examples and managed to solve it all. The comparative 
study of the results gave a clear indication for the 
superiority of CS in reducing the computational time. These 
observations could easily be noticed in multi-packs 

functions. The CS algorithm is firstly ranked again in terms 
of the value of the obtained near optimal solution. 
According to the IFPP solution results, the three algorithms 
could be ordered as follows CS, FA, and finally PSO with 
respect to convergence time and obtained optimization 
value. 
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