
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 191
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Employing Three Swarm Intelligent Algorithms for
Solving Integer Fractional Programming

Problems

Ibrahim M. Hezam, Osama Abdel Raouf

Abstract---This paper seeks for the integer optimal solution of the Fractional Programming Problem (IFPP) using three different Swarm Intelligence (SI)
algorithms. The three algorithms are: Particle Swarm Optimization (PSO), Firefly Algorithm (FA), and Cuckoo Search (CS). The proposed approaches
perform this by embedding the search space truncating the real values to the nearest integers inside feasible region. This method idea based on SI,
rounds the real solutions after every step and after the final step. SI approach can get near optimal solutions in a reasonable time and effort. SI is an
effective techniques for non-smooth functions. The numerical result and statistical analysis show that the proposed methods perform significantly better
than previously used classical methods. A comparative study among the three SI algorithms on the selected benchmark examples was carried out. The
study revealed an almost similarity in performance with a privilege in computation time and optimization results for cuckoo search.

Index Terms--Swarm Intelligence, Particle Swarm Optimization, firefly algorithm, cuckoo search, Fractional Programming, Integer Programming.

1. INTRODUCTION
nteger fractional programming plays an important part in
the optimization modeling and real-world applications,
require the variables to be optimized to be integers, such

as fixed-charge problems, job-shop scheduling problems,
including resource allocation, production scheduling,
marketing, capital budgeting, assignment, transportation,
and reliability networks. In order to solve this kind of
problem, optimization techniques developed for real search
spaces can be applied to integer programming problems
and determine the optimal solution by rounding of the real
optimum values to the nearest integers inside feasible
region.
There are several studies in recent years used
nontraditional methods to solve integer programming as:
Laskari E.C., et al. in [1] (2002) proposed the Particle swarm
Optimization for integer programming. Kitayama S., and
Yasuda K., [2] (2006) proposed Particle Swarm

Optimization for mixed integer programming. The
proposed method is that discrete variables are treated
by a penalty function, so that all variables can be
handled as the continuous ones. And they proposed a
new method of setting and updating the penalty
parameter when discrete variables are treated in terms
of the penalty function. Li Y., et al. in [3] (2007) used
chaotic ant swarm to solve the problem of integer
programming by embedding the search space Z into R
and truncating the real values to the nearest integers.
They introduced two novel methods based on the
chaotic ant swarm, rounding the real solutions after
every step and after the final step.

Matsui T., et al. in [4] (2008) develop a new particle swarm

optimization method which was applied to discrete
optimization problems by incorporating a new
method for generating initial search points, the
rounding of values obtained by the move scheme and
the revision of move methods. Omran M. G. H, et al.
in [5] (2007) evaluated the performance of two

versions of the barebones PSO in solving Integer
Programming problems. Matsui T., et al. in [4] (2008)

develop a new particle swarm optimization method
which was applied to discrete optimization problems
by incorporating a new method for generating initial
search points, the rounding of values obtained by the
move scheme and the revision of move methods.
Chen H., et al. in [6] (2009) developed particle swarm
optimization based on genetic operators for nonlinear
integer programming. The integer restriction of
problems was transformed by coding solutions.
According to optimal solutions of population and
individual, the new particle was updated by
crossover, mutation and selection operators. Wu P., et
al. [7] (2010) proposed an effective global harmony
search algorithm for integer programming problems.
The effective global harmony search algorithm was
proposed to solve integer programming problems.
The effective global harmony search algorithm
designs a novel location updating equation, which
enables the improvised solution to move to the global
best solution rapidly in each iteration. Random
selection with a low probability was carried out for the
improvised solution after updating location, for it can
prevent the effect global harmony search algorithm
from being trapped into the local optimum. Yang H.,
and Zhao S., [8] (2010), presented a novel hybrid
approach for solving the Container Loading problem
based on the combination of immune particle swarm
optimization and Integer linear programming model.

I

• Ibrahim M. Hezam, Department of Mathematics& computer, Faculty
of Education, Ibb University, Yemen.
 E-mail: Ibrahizam.math@gmail.com

• Osama Abdel Raouf Department of Operations Research and
Decision Support, Faculty of Computers & Information, Minufiya
University. E-mail: osamaabd@hotmail.com

http://www.ijser.org/
mailto:Ibrahizam.math@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 192
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Liu Y., and Ma L., [9] (2011) presented Bee Colony
Foraging Algorithm for Integer Programming, The
principle of the optimization algorithm was discussed
and the implementation of the method was presented.
Pal A., et al.[10] (2011) presented use of a particle
swarm optimization (PSO) algorithm for solving
integer and mixed integer optimization problems.
Datta D., and Figueira J R.,[11] (2011) develop some
integer coded versions of PSO for dealing with integer
and discrete variables of a problem. Bacanin, N., et al.
in [12] (2013) applied firefly algorithm to integer
programming problems by rounded the parameter
values to the closest integer after producing new
solutions. Ibrahim M. H. and Osama A. [13] (2013)
used particle swarm optimization approach for
solving complex variable fractional programming
problems.

However, all the above researches did not address cuckoo
search for integer programming generally and did not
apply it directly to handle the integer fractional
programming problems.
The purpose of this research work is to investigate the
solution the integer fractional programming problem using
swarm intelligence. Section 2 introduces the formulation of
the integer fractional programming problems. Particle
swarm optimization algorithm is reviewed in section 3.
Section4 review firefly algorithm. Cuckoo search algorithm
introduced in section 5. Illustrative examples and
discussing the results are presented in Section 6. Finally,
Conclusions are presented in Section7.

2. INTEGER FRACTIONAL PROGRAMMING
The paper, consider the general fractional programming
problem (FPP) as in the following form:

()
()1

1
min/ max (,...,)

p
i

n
ii

f x
z x x

g x
=

=∑

()
()

, 0

0, 1,..., ;

0, 1,..., ;

, 1,.., .

k
n

j
l u
i i i

subject to x S x

h x k K

S x R m x j J

x x x i n

∈ ≥

 ≥ =
  = ∈ = = 
 

≤ ≤ =  

(1)

()
1

0, 1,.., .
,..., .

i

n

g x i n
x x Z

≠ =

∈

where () (),i if x g x , are continuous functions, Z is the set
of integers. S is compact.
Fractional programming of the form (1) arises in a natural
way whenever rates such as the ratios (profit/revenue),
(profit/time), (-waste of raw material/quantity of used raw
material), are to be maximized often these problems are
linear or at least concave-convex fractional programming
[14].

There are many different direct algorithms to solve the
fractional programming problem.
 Classical algorithms contain two stages: stage 1: solve
the FPP via Charnes–Cooper’s transformation, Dinkelbach
algorithms both types, Isbell Marlow method, Wolf
parametric approach, Martos’ Algorithm, Cambini–
Martein’s Algorithm, etc. For converting the fractional
programming problems to non-fractional programming
problems. Stage 2: use the branch and bound technique,
cutting planes, the implicit enumerative method and other
methods to solve the integer programming problems IPP.
However, when the dimension of IFPP is small, the classical
algorithm such as the above methods is able to handle the
problem and give the required solution. But, in large-scale
problems, and nonlinear cases, this is not always efficient. It
will cost much computing convergence time, which cannot
satisfy the requirement of engineering.

 3. PARTICLE SWARM OPTIMIZATION (PSO)[15–17]
Particle swarm optimization is a population based
stochastic optimization technique developed by Eberhart
and Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling.
The characteristics of PSO can be represented as follows:

k
ix The current position of the particle i at iteration k;
k
iv The current velocity of the particle i at iteration k;
k
iy The personal best position of the particle i at iteration

k;
k
iy The neighborhood best position of the particle.

The velocity update step is specified for each dimension j ∈
1,…,Nd, hence, vi,j represents the jth element of the velocity
vector of the ith particle. Thus, the velocity of particle i is
updated using the following equation:

() ()() () () ()()()
() () ()()()

1 1

2 2

1k k
i i i i

i i

v t round wv t round c r t y t x t

round c r t y t x t

+ = + −

+ −

(2)
 where w is weighting function, 1,2c are weighting

coefficients, (),2ir t are random numbers between 0 and 1.
The current position (searching point in the solution space)
can be modified by the following equation:

1 1k k k
i i ix x v+ += + (3)

The detailed operation of particle swarm optimization is
given below:
Step 1: Initialize parameters and population.
Step 2: Initialization. Randomly set the position and
velocity of all particles, within pre-defined ranges. And on
D dimensions in the feasible space (i.e.it satisfies all the
constraints)
Step 3: Velocity Updating. At each iteration, velocities of all
particles are updated according to equation (2)

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 193
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

After updating, k
iv should be checked and maintained

within a pre-specified range to avoid aggressive random
walking.
Step 4: Position Updating. Assuming a unit time interval
between successive iterations, the positions of all particles
are updated according to equation (3).
After updating, k

ix should be checked and limited within
the allowed range.
Step 5: Memory updating. Update k

iy and
k
iy when condition is met.

()
() ()() ()()
() ()() ()()

1
1

1 1

k k k
i i ik

i k k k
i i i

y t if f x t f y t
y t

x t if f x t f y t

 + ≥+ = 
 + + <


where f(x) is the objective function subject to maximization.
Step 6: Termination Checking. Repeat Steps 2 to 4 until
definite termination conditions are met, such as a pre-
defined number of iterations or a failure to make progress
for a fixed number of iterations.

4. FIREFLY ALGORITHM (FA) [16], [18–20]

The Firefly Algorithm was developed by Yang (2008) and it
was based on the following idealized behavior of the
flashing characteristics of fireflies:
• All fireflies are unisex so that one firefly is attracted to
other fireflies regardless of their sex;
• Attractiveness is proportional to their brightness, thus for
any two flashing fireflies, the less bright one will move
towards the brighter one. The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If no one is brighter than a particular firefly, it
moves randomly;
• The brightness or the light intensity of a firefly is affected
or determined by the landscape of the objective function to
be optimized.
The operation of the Firefly Algorithm is as follows:
Step 1: Define Objective function () ()1 2, , ,..., df x x x x x=
and Generate initial population of fireflies placed at
random positions within the n-dimensional search space,
xi. Define the light absorption coefficient γ .
Step 2: Define the Light Intensity of each firefly, Li, as the
value of the cost function for xi.
Step 3: For each firefly, xi, the light Intensity, Li, is
compared for every firefly xj { }1,2,...,j d∈
Step 4: If Li is less than Lj, then move firefly xi towards xj in
n-dimensions. The value of attractiveness between flies
varies relatively the distance r between them:

()21 ()ijrt t t t t
i i j i ix round x e x xγβ αe−+ = + − +

(4)
where β is the attractiveness at r=0 the second term is due
to the attraction, while the third term is randomization with
the vector of random variables εi being drawn from a

Gaussian distribution. 0,1α ∈   . The distance between any

two fireflies i and j at i jx and x can be regarded as the

Cartesian distance
2ij i jr x x= − or the 2l -norm.

Step 5: Calculate the new values of the cost function for
each fly, xi, and update the Light Intensity, Li.
Step 6: Rank the fireflies and determine the current ‘best’.
Step 7: Repeat Steps 2 to 6 until definite termination
conditions are met, such as a pre-defined number of
iterations or a failure to make progress for a fixed number
of iterations.

5. CUCKOO SEARCH ALGORITHM (CS) [21–26]
The Cuckoo search algorithm is a Meta heuristic search
algorithm which has been proposed recently by Yang and
Deb (2009) and it was based on the following idealized
rules:
• Each cuckoo lays one egg at a time, and dumps it in a
randomly chosen nest.
• The best nests with high quality of eggs (solutions) will
carry over to the next generations.
• The number of available host nests is fixed, and a host can
discover an alien egg with a probability []0,1ap ∈ . In this
case, the host bird can either throw the egg away or
abandon the nest so as to build a completely new nest in a
new location.
Cuckoo search algorithm
Begin

Objective function () ()1 2, , ,..., ;T
df x x x x x=

 Initial a population of n host nests ()1,2,...,ix i d=
while (t < MaxGeneration) or (stop criterion);
 Get a cuckoo (say i) randomly
 and generate a new solution by Lévy flights;
 Evaluate its quality/fitness; F Ri
 Choose a nest among n (say j) randomly;
if (F RiR > FRjR),
 Replace j by the new solution;
end
 Abandon a fraction (Pa) of worse nests
 [and build new ones at new locations via Lévy flights];
 Keep the best solutions (or nests with quality solutions);
 Rank the solutions and find the current best;
 end while
 Post process results and visualization;
End

when generating new solutions ()1ix t + for the ith
cuckoo, the following Lévy flight is performed
() () ()1 vyt t
i ix round x Leα λ+  = + ⊕ 

 
 (5)

where 0α > is the step size, which should be related to the
scale of the problem of interest. The product ⊕ means
entry-wise multiplications [26]. In this research work, we
consider a Lévy flight in which the step-lengths are

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 194
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

distributed according to the following probability
distribution

vy ,1 3Le u t λ λ−= < ≤
which has an infinite variance. Here the consecutive
jumps/steps of a cuckoo essentially form a random walk
process which obeys a power-law step length distribution
with a heavy tail.

For integer programming, the SI can be used by embedding
the search space Z into R and truncating the real values to
the nearest integers after every step.
The only difference between a real-coded PSO, FA, and CS
and an integer coded is the data-type after evolution
according to (2), (3), (4), and (5) respectively.

6. ILLUSTRATIVE EXAMPLES WITH DISCUSSION

Five examples were collected from literature to
demonstrate the efficiency and robustness of the proposed
algorithms in solving fractional programming problems.
The numerical results which are compared among the
present algorithms are illustrated in Table 1. The algorithms
have been implemented by MATLAB R2011. Where the
functions are as the following:

()
()()

2 2 2

1 22 2

sin 0.5
: min 0.5

1 0.001

100 , 100, , int

x y
f z

x y

subject to x y where x y are eger

+ −
= +

+ +

− ≤ ≤

()
()()
2 2

2 22 2

cos sin 0.5
: min 0.5

1 0.001

100 , 100, , int

x y
f z

x y

subject to x y where x y are eger

+ −
= +

+ +

− ≤ ≤

3
6 6: min
11
0 4;

0 2 7, , int

x yf z
x y

subject to x
y where x y are eger

+
=

+
≤ ≤

≤ ≤

2 2

4 2 2
1: min 1.1

1
3 , 3, , int

x yf z e
x y

subject to x y where x y are eger

− −= −
+ +

− ≤ ≤

2

5 2: min

1 4;
0 2, , int

y

x
x ef z
e y

subject to x
y where x y are eger

+
=

+
≤ ≤
≤ ≤

The figures (1-5.a,b) shows the graphical representation of
the solution space of the objective function, side by side,
with a 2d plot comparing PSO, FA and CS with respect to
Computational time. The value of the decision variables
obtained were almost identical for the three different SI
algorithms. However a slight improvement in the objective
function and its decision variables values can be noticed in
CS solution results. Then CS have the advantage of
reaching a better objective function value as well as the fast
convergence.

Table (1): Comparison results of the PSO, FA and CS.
Fun.

/ Tec.

N
um

. o
f

Ite
ra

tio
n

 PSO FA CS
Optimal value Time (Sec.) Optimal value Time (Sec.) Optimal value Time (Sec.)

1f

10
15
20
25
30

(-6,5) z=-0.8365
(-66,5) z=-0.8365
(4,7) z=-0.8358
(0,-11) z=- 0.8215
(-1,3) z=-0.8355

18.00
26.82
35.37
44.01
52.55

(-2,-50) z=-0.596
(-66,32) z=-0.3745
(0,-66) z=-0.6436
(0,-8) z=-0.50467
(-3,-18) z=-.5117

0.081
0.164
0.177
0.231
0.265

(-3,-100) z=-0.70691
(-1,-52) z=-0.5873
(-4,-100) z=-0.6821
(4,-100) z=-0.69531
(3,-100) z=-0.7094

0.024
0.035
0.043
0.044
0.065

2f

10
15
20
25
30

(82,64) z=0.50035
(-84,42) z=0.50052
(-29,86) z=0.5006
(-87,-58) z= 0.5003
(22,96) z=0.50043

13.721
19.632
26.657
33.486
40.007

(-100,-46) z=0.50035
(-89,72) z=0.500247
(-100,-7) z=0.50039
(-98,91) z=0.50016
(-87,98) z=0.50014

0.0944
0.142
0.196
0.244
0.266

(94,100) z=0.50011
(-95,-100) z=0.50013
(100,98) z=0.50010
(-98,100) z=0.50011
(-98,100) z=0.50011

0.0312
0.0337
0.0399
0.0518
0.0669

3f

10
15
20
25
30

(2,0) z=0.5454
(2,0) z=0.5454
(2,0) z=0.5454
(2,0) z=0.5454
(1,0) z=0.5454

0.753
1.433
1.463
1.737
2.323

(2,0) z=0.5454
(2,0) z=0.5454
(2,0) z=0.5454
(1,0) z=0.5454
(3,0) z=0.5454

0.0734
0.1074
0.1321
0.1752
0.2322

(2,0) z=0.5454
(3,0) z=0.5454
(3,0) z=0.5454
(1,0) z=0.5454
(3,0) z=0.5454

0.0275
0.0308
0.0387
0.0531
0.0566

4f

10
15
20
25
30

(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1

1.0775
1.5725
2.2214
2.5044
3.3674

(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1

0.07951
0.11831
0.15030
0.20335
0.22500

(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1
(0,0) z=-0.1

0.04279
0.04904
0.05308
0.06190
0.08736

5f

10
15
20
25
30

(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586

0.7349
1.0383
1.4458
1.7264
1.9723

(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586

0.07689
0.13825
0.21487
0.21881
0.24019

(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586
(4,0) z=0.31136586

0.02968
0.03175
0.06566
0.06974
0.08310

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 195
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 196
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 (a) (b)

Fig.1. (a) Objective function f1 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.

 (a) (b)

Fig.2. (a) Objective function f2 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.

 (a) (b)

Fig.3. (a) Objective function f3 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.

-100
-50

0
50

100

-100
-50

0

50
100

-1

-0.5

0

0.5

1

X

0.5+((sin(sin(x2-y2))-0.5)/(1+(0.001*(x2+y2))2))

Y

Z

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

35

40

Number of Iteration

P
ro

ce
ss

in
g

Ti
m

e

pso
FA
CS

-100
-50

0
50

100

-100
-50

0

50
100
0.5

0.6

0.7

0.8

0.9

1

X

0.5+((cos(sin(abs(x2-y2)))-0.5)/(1+(0.001*(x2+y2))2))

Y

Z

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

35

Number of Iteration

P
ro

ce
ss

in
g

Ti
m

e

pso
FA
CS

0
1

2
3

4

0
1

2

3
4
0

2

4

6

8

X

(6*x+6*y)/(11*x+y)

Y

Z

10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

Number of Iteration

P
ro

ce
ss

in
g

Ti
m

e

pso
FA
CS

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 197
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 (a) (b)

Fig.4. (a) Objective function f4 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.

 (a) (b)

Fig.5. (a) Objective function f5 iterative space using SI algorithms. (b) 2d plot for the convergence time of PSO, FA, and CS.

Fig. 1-2, (b). Evidently shows that CS and FA algorithms are
quite better than the PSO in the terms of computational
time for reaching optimum or near optimum optimization.
PSO computation time reached a value of 40-50 second to
obtain optimality while FA and CS algorithms took less
than a second to reach the same optimal goal. This could be
indicated to the multi-packs in the functions 1 2,f f only.
While in simple function such as 3f , 4f and 5f shown in
figures (3, 4, 5-b) respectively, CS algorithm is still in
advance with less dominance. Then comes the FA
algorithm, while PSO algorithm comes last in terms of
computation time.
Overall the three algorithms reached almost exactly the
same objective function and decision variables value in all
the simple functions 3f , 4f and 5f

7. CONCLUSIONS
The current research work managed to solve integer
fractional programming problem (IFPP) using three
different swarm intelligence (SI) algorithms. The numerical
result and statistical analysis indicated that the proposed
methods perform significantly better than the previously
used the classical methods. The three used algorithms
named particle swarm optimization (PSO), firefly algorithm
(FA), and cuckoo search (CS) were tested on benchmark
examples and managed to solve it all. The comparative
study of the results gave a clear indication for the
superiority of CS in reducing the computational time. These
observations could easily be noticed in multi-packs

functions. The CS algorithm is firstly ranked again in terms
of the value of the obtained near optimal solution.
According to the IFPP solution results, the three algorithms
could be ordered as follows CS, FA, and finally PSO with
respect to convergence time and obtained optimization
value.

REFERENCES
[1] E. C. Laskari, K. E. Parsopoulos, and M. N.

Vrahatis, “Particle swarm optimization for integer
programming,” in Evolutionary Computation, 2002.
CEC’02. Proceedings of the 2002 Congress on, 2002, vol.
2, pp. 1582–1587.

[2] S. Kitayama and K. Yasuda, “A method for mixed
integer programming problems by particle swarm
optimization,” Electrical Engineering in Japan, vol. 157,
pp. 40–49, 2006.

[3] Y. Li, L. Li, Q. Wen, and Y. Yang, “Integer
programming via chaotic ant swarm,” in Natural
Computation, 2007. ICNC 2007. Third International
Conference on, 2007, vol. 4, pp. 489–493.

[4] A. W. Mohemmed, N. C. Sahoo, and T. K. Geok,
“Solving shortest path problem using particle swarm
optimization,” Applied Soft Computing, vol. 8, pp.
1643–1653, 2008.

[5] M. G. Omran, A. Engelbrecht, and A. Salman,
“Barebones particle swarm for integer programming
problems,” in Swarm Intelligence Symposium, 2007.
SIS 2007. IEEE, 2007, pp. 170–175.

-4
-2

0
2

4

-4
-2

0

2
4

-0.2

-0.1

0

0.1

0.2

X

(1/(x2+y2+1))-(1.1*exp(-x2-y2))

Y

Z

10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3

3.5

Number of Iteration

P
ro

ce
ss

in
g

Ti
m

e

pso
FA
CS

1

2

3

4

0
0.5

1

1.5
2
0

0.5

1

1.5

2

X

(x2+exp(y))/(exp(x)+y)

Y

Z

10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Iteration

P
ro

ce
ss

in
g

Ti
m

e

pso
FA
CS

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 198
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[6] H. Chen, S. Wang, and H. Wang, “Particle Swarm
Optimization Based on Genetic Operators for
Nonlinear Integer Programming,” in Intelligent
Human-Machine Systems and Cybernetics, 2009.
IHMSC’09. International Conference on, 2009, vol. 1,
pp. 431–433.

[7] P. Wu, L. Gao, Y. Ge, and D. Zou, “An effective
global harmony search algorithm for integer
programming problems,” in Computer Design and
Applications (ICCDA), 2010 International Conference on,
2010, vol. 1, pp. 1–40.

[8] H. Yang and S. Zhao, “A Hybrid Approach Based
on Immune Particle Swarm Optimization and
Integer Liner Programming for the Container
Loading Problem,” in Biomedical Engineering and
Computer Science (ICBECS), 2010 International
Conference on, 2010, pp. 1–4.

[9] Y. Liu and L. Ma, “Bee colony foraging algorithm
for integer programming,” in Business Management
and Electronic Information (BMEI), 2011 International
Conference on, 2011, vol. 5, pp. 199–201.

[10] K. D. S.B. Singh Pal A., “Use of Particle Swarm
Optimization Algorithm for Solving Integer and
Mixed Integer Optimization Problems,” International
Journal of Computing Science and Communication
Technologies, vol. VOL. 4, NO. 1,, pp. 663–667.

[11] D. Datta and J. R. Figueira, “A real-integer-discrete-
coded particle swarm optimization for design
problems,” Applied Soft Computing, vol. 11, pp. 3625–
3633, 2011.

[12] N. BACANIN, I. BRAJEVIC, and T. Milan, “Firefly
Algorithm Applied to Integer Programming
Problems.”

[13] I. M. Hezam and O. AbdelRaouf, “Particle Swarm
Optimization Approach For Solving Complex
Variable Fractional Programming Problems,”
International Journal of Engineering Research &
Technology (IJERT), vol. Vol. 2 Issue 4,, pp. 2672–2677,
2013.

[14] T. B. Farag, “A Parametric Analysis on Multicriteria
Integer Fractional Decision-Making Problems,”
Faculty of Science, Helwan University.

[15] D. Bratton and J. Kennedy, “Defining a standard for
particle swarm optimization,” in Swarm Intelligence
Symposium, 2007. SIS 2007. IEEE, 2007, pp. 120–127.

[16] K. O. Jones and G. Boizanté, “Comparison of Firefly
algorithm optimisation, particle swarm optimisation
and differential evolution,” in Proceedings of the 12th
International Conference on Computer Systems and
Technologies, 2011, pp. 191–197.

[17] K. Y. Lee and M. A. El-Sharkawi, Modern heuristic
optimization techniques: theory and applications to power
systems, vol. 39. Wiley-IEEE press, 2008.

[18] X.-S. Yang, Nature-inspired metaheuristic algorithms.
Luniver Press, 2011.

[19] X.-S. Yang, “Firefly algorithms for multimodal
optimization,” in Stochastic algorithms: foundations and
applications, Springer, 2009, pp. 169–178.

[20] X.-S. Yang, S. S. Sadat Hosseini, and A. H.
Gandomi, “Firefly algorithm for solving non-convex
economic dispatch problems with valve loading
effect,” Applied Soft Computing, vol. 12, pp. 1180–
1186, 2012.

[21] A. H. Gandomi, X.-S. Yang, and A. H. Alavi,
“Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems,”
Engineering with Computers, vol. 29, pp. 17–35, 2013.

[22] R. Rajabioun, “Cuckoo optimization algorithm,”
Applied Soft Computing, vol. 11, pp. 5508–5518, 2011.

[23] E. Valian, S. Mohanna, and S. Tavakoli, “Improved
cuckoo search algorithm for feed forward neural
network training,” International Journal of Artificial
Intelligence & Applications, vol. 2, pp. 36–43, 2011.

[24] S. Walton, O. Hassan, K. Morgan, and M. Brown,
“Modified cuckoo search: A new gradient free
optimisation algorithm,” Chaos, Solitons & Fractals,
vol. 44, pp. 710–718, 2011.

[25] X.-S. Yang and S. Deb, “Engineering optimisation
by cuckoo search,” International Journal of
Mathematical Modelling and Numerical Optimisation,
vol. 1, pp. 330–343, 2010.

[26] X.-S. Yang and S. Deb, “Cuckoo search via Lévy
flights,” in Nature & Biologically Inspired Computing,
2009. NaBIC 2009. World Congress on, 2009, pp. 210–
214.

http://www.ijser.org/

